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Abstract: Virtual reality (VR) technology has been demonstrated to be effective in rehabilitation
training with the assistance of VR games, but its impact on brain functional networks remains
unclear. In this study, we used functional near-infrared spectroscopy imaging to examine the
brain hemodynamic signals from 18 healthy participants during rest and grasping tasks with and
without VR game intervention. We calculated and compared the graph theory-based topological
properties of the brain networks using phase locking values (PLV). The results revealed significant
differences in the brain network properties when VR games were introduced compared to the
resting state. Specifically, for the VR-guided grasping task, the modularity of the brain network
was significantly higher than the resting state, and the average clustering coefficient of the motor
cortex was significantly lower compared to that of the resting state and the simple grasping
task. Correlation analyses showed that a higher clustering coefficient, local efficiency, and
modularity were associated with better game performance during VR game participation. This
study demonstrates that a VR game task intervention can better modulate the brain functional
network compared to simple grasping movements and may be more beneficial for the recovery of
grasping abilities in post-stroke patients with hand paralysis.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Virtual Reality (VR) is a computer simulation system that creates a virtual world for simulated
experiences [1]. VR technology involves interactive simulated environments that enhance users’
engagement through appropriate sensory feedback and provide a realistic experience similar to
the real world [2]. This immersive experience can motivate users to engage for longer periods and
reduce the likelihood of boredom. In the context of VR games, users can engage in sensory-motor
interactions. VR gaming platforms have been applied to motor function rehabilitation [3,4].
For better rehabilitation, the design of VR game paradigms needs to adhere to rehabilitation
theories. Neural plasticity provides a theoretical basis for motor function rehabilitation in stroke
patients [5]. Specifically, Cortical reorganization plays a crucial role in neural plasticity, and the
significant reduction in limb activity following a stroke can lead to a decrease in neural plasticity
[6].

Traditional limb rehabilitation treatments, such as hand-grasping function rehabilitation in post-
stroke hemiparetic patients, often require the constant guidance and assistance of a rehabilitation
therapist, which can be time-consuming and labor-intensive. Additionally, long periods of
repetitive training without timely feedback may decrease patients’ motivation and treatment
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efficacy [4]. To address this issue, some studies have proposed incorporating virtual reality
(VR) games into rehabilitation training to increase their enjoyment [7]. Moreover, the visual,
tactile, and cognitive stimulation or feedback provided by virtual scenes and games can further
enhance neural plasticity, influence brain network reorganization, and promote post-stroke motor
function recovery [8]. Studies have demonstrated the effectiveness of VR game interventions in
upper limb rehabilitation through assessments using tracking scales [9–12]. In addition, Silvia et
al. [13] used electroencephalography (EEG) and compared the activation patterns in healthy
subjects under different VR scenes. They discovered the VR game training scene mode that
most effectively stimulates the motor cortex. Chen et al. [14] used EEG and electromyography
techniques to record the relevant cortical potentials in the brain and muscle activity in the
upper limbs of patients undergoing VR rehabilitation training and traditional therapy. They
found that VR intervention was superior to the traditional therapy in improving cognitive neural
processes related to movement expectation and reducing excessive compensatory activation in
the contralateral cerebral hemisphere. Although the effectiveness of VR game intervention in
improving limb function recovery has been demonstrated, the mechanisms underlying its impact
on the cortical functional network of the brain are not yet clear.

The brain is a complex organ with interconnected regions that exhibit dynamic functional
patterns [15]. Analyzing brain functional networks allows researchers to capture this complexity
by considering the interactions and relationships between different brain regions, providing
a comprehensive understanding of brain function [16,17]. By studying the organization and
connectivity patterns of brain functional networks, researchers can develop models that may
help predict individual cognitive performance or behavioral traits, contributing to personalized
medicine and neuroscience. On the other hand, brain network information is associated with
after-stroke motor function [18,19], and exploring the effect of VR on brain network function is
conducive to understanding the mechanism of VR games in stroke rehabilitation.

Thus, this study aims to design a task-oriented hand function rehabilitation approach utilizing
virtual game scenes and use fNIRS to investigate the influence of the VR-guided rehabilitation
program on the brain functional network. fNIRS reflects brain function activity by measuring
concentration changes of oxygenated and deoxygenated hemoglobin (∆[HbO2] and ∆[Hb]).
fNIRS has the advantages of non-invasiveness, low cost, portability, minimal subject restriction,
strong anti-interference capability, and low environmental requirements. It has become an
important research tool in stroke rehabilitation [20–23]. We calculated the brain network
topological properties based on the graph theory method, compared the differences in brain
network regulation between VR rehabilitation training and traditional rehabilitation training
and tried to establish a mapping relationship between VR rehabilitation training and motor
performance behavior. This study can provide a theoretical basis for the further development of
task paradigms suitable for rehabilitation training.

2. Materials and methods

2.1. Subjects

A total of 18 young healthy subjects were recruited (8 females and 10 males) to participate in this
study. All subjects had no history of hypertension, severe illnesses, or traumatic brain injuries,
and were able to actively perform grasping movements. Subjects with any of the following
conditions were excluded: congenital deformities in any part of the body, infectious diseases,
critical illnesses, or poor compliance. We collected information on the subjects’ age, body mass
index (BMI), and hand conditions (see Table 1). The experimental procedures were approved by
the Ethics Committee of the National Rehabilitation Technology Assistance Research Center
and were conducted in accordance with the ethical standards outlined in the 1975 Helsinki
Declaration and its revised version in 2008. The clinical trial was registered under the number
“ChiCTR210005148”. All subjects provided informed consent before the formal experiment.
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Table 1. Basic information of subjects

Parameters Means (SD)

Age (years) 25.2 (1.9)

Body mass index (BMI) 21.21 (2.6)

Number of right-handed subjects 18 (0)

2.2. VR rehabilitation game

Repetitive grasping training is beneficial for hand function recovery [24]. Repetitive rehabilitation
training helps patients establish new connections between their limbs and the central nervous
system, leading to effective rehabilitation outcomes [25]. And the high-interest task paradigms
can induce strong movement-performing intentions [26]. Based on virtual scenes, we have
developed a specific task-oriented rehabilitation training paradigm for stroke patients [27], aiming
to improve patients’ initiative and enthusiasm in rehabilitation training and promote their hand
function recovery.

The VR rehabilitation game scenes were designed using Unity3D. In the game, subjects
were induced to perform continuous grasping movements by following a repetitive motion track.
Subjects controlled a ball in the game to avoid obstacles by extending and flexing their fingers
and obtained scoring points in this process. To minimize testing variables, the arrangement of
tracks was a repetitive trajectory. The game scenes are shown in Fig. 1(a). We used a data glove
(Fig. 1(a)) to capture the joint angle movements of the subjects’ hands, which were then used to
control the left and right movement of the ball in the game. Additionally, we recorded the game
duration, finger bending angles, the real-time coordinates of the ball, and the coordinates of the

Fig. 1. Experimental setup. (a) Game scenes and VR data gloves. (b) Experimental
procedure. (c) fNIRS-measured brain area schematic diagram. The blue area represents
PFC, the red area represents MC, and the green area represents OC.
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channel track. The accuracy of subjects completing the game can be determined by calculating
the difference between the real-time coordinates of the ball and the coordinates of the midpoint
of the channel track.

2.3. Experimental procedures

In the experiment, participants were scheduled to undergo rest and two task conditions: (Task 1)
a simple grasping task and (Task 2) a VR game-directed grasping task. Before the experiment,
participants had at least 10 minutes of practice to familiarize themselves with the game operation
in Task 2. They were required to successfully guide the ball through 95% of the channels in a
single grasping motion [28], ensuring they had learned the game operation. The experiment was
conducted in a quiet room. During the rest condition, participants closed their eyes, remained
awake and maintained a relaxed sitting position for eight minutes. After a 5-minute break, they
performed eight minutes of continuous grasping training without the game guidance. After
another 5-minute break, they performed eight minutes of continuous grasping training with the
game guidance. In Task 2, participants controlled the ball in the game by performing continuous
grasping motions, following a pre-set track in the form of a periodic trajectory. Participants were
required to complete one grasping motion each period. The experimental procedure is illustrated
in Fig. 1(b). To minimize testing variables, no sound was added to the game.

2.4. fNIRS data collection

We used the multi-channel fNIRS imaging device (NirSmart, Danyang Huicuang Medical
Equipment Co., Ltd., China) to collect brain hemodynamic signals during the experiment. A
continuous-wave fNIRS system using wavelengths of 760 and 850 nm was utilized to collect
the fNIRS data at a sampling rate of 10 Hz. The differential path-length factors (DPFs) were
set to 6. The emitter-detector distance was 3 cm. We determined the specific brain regions of
interest based on the cortical areas involved in grasping movements and game task execution.
The prefrontal cortex (PFC) is commonly considered the center of human cognitive functions,
involved in information processing such as working memory and attention allocation [18,29].
The motor cortex (MC) is responsible for perceiving body posture and movement and controlling
movements of the contralateral limbs and plays a significant role in sensation and motor control
[30–32]. The occipital cortex (OC) is primarily involved in visual information processing and is
also associated with functions such as memory and motion perception [33]. In our task-oriented
grasping game, visual observation is required to obtain the movement trajectory, followed by
decision-making and execution based on the observed trajectory. This involves visual information
processing, cognition, attention allocation, and limb movement execution. Therefore, we selected
six brain regions of interest, including the left and right prefrontal cortex (LPFC, RPFC), left
and right motor cortex (LMC, RMC), and left and right occipital cortex (LOC, ROC). These six
brain regions and their channel distribution, arranged according to the 10/10 international system
[34], are shown in Fig. 1(c).

2.5. fNIRS data processing

2.5.1. fNIRS data preprocessing

We preprocessed the data using the MATLAB software. Firstly, we applied the modified
Lambert-Beer law to obtain ∆[HbO2] and extracted the hemodynamic parameters for each task
condition [35]. The ∆[HbO2] variable appeared to be sufficiently sensitive for representation of
information processing in the cortical region, whereas the combination of these two variables
only improves slight performance in some cases [36]. Therefore, only ∆[HbO2] signal was used
for analyses in this study. Then, we employed the Time Derivative Distribution Repair (TDDR)
algorithm [37,38] to remove the baseline drifts and peak artifacts. Since superficial artifacts
affect every channel as a global interference signal, we applied the Common Average Reference
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(CAR) spatial filtering method [39,40], and calculated the mean value across all channels and
subtracted this value from each channel at each time point to reduce the impact of the superficial
artifacts [39,41]. Finally, we applied a bandpass filter to obtain the fNIRS signals in the range of
0.01-0.1 Hz [42].

2.5.2. Graph theory-based brain network properties

In this study, we used fNIRS channels as nodes and the functional connections between channels
as edges, and constructed an undirected and unweighted graph theoretical network analysis. The
instantaneous phase for each fNIRS channel was obtained by using the Hilbert transform, and
the Phase-locking value (PLV) [43,44] between every pair of channels was used to construct the
correlation matrix, denoted as

mplv =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
PLV1 1 · · · PLV1 ch

...
. . .

...

PLVch 1 · · · PLVch ch

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (1)

where ch represents the number of channels. The PLV between channel a and channel b is defined
as

PLVa b =

|︁|︁|︁|︁|︁ 1N N∑︂
n=1

exp(j(φa[n] − φb[n]))

|︁|︁|︁|︁|︁ , (2)

where φ[n] is the instantaneous phase for the nth sampling point of a certain channel, and N
is the number of sampling points for that channel. In this manner, we obtained the PLV-based
functional connectivity network of samples

Next, we obtained the corresponding binary network from the correlation matrix by applying
different sparsity thresholds. We chose a threshold range of 0.2-0.6 with a step size of 0.02. The
elements in the upper or lower triangle of the mplv matrix were sorted in descending order, and
elements greater than the threshold were set to 1, while the rest were set to 0. For example, at a
threshold of 0.4, the top 60% of correlations were defined as 1, indicating a connection between
those two channels in graph theory. Finally, using the Brain Connectivity Toolbox (BCT), graph
theoretical measures were computed, including clustering coefficient (C), characteristic path
length (Lp), global efficiency (GE), local efficiency (LE), transitivity (T), and small-worldness
(δ) [45].

(1) The clustering coefficient (Ci) of a node represents the degree of connectivity between
the node and its neighbors. The network’s C is the average of all the node clustering
coefficients, and it reflects the local clustering and isolation degree of the entire network.
It is given as

C =
1
m

m∑︂
i=1

Ci =
1
m

m∑︂
i=1

2ei

Ki(Ki − 1)
, (3)

where Ci represents the clustering coefficient of node i, ei represents the number of directly
connected neighboring nodes to node i, Ki represents the degree of node i, and m is the
total number of nodes.

(2) Lp is defined as the minimum number of edges required to connect any two nodes in the
network. It represents the average path length of all nodes in the network, given by

Lp =
1

m(m − 1)

∑︂
x,y∈m,x≠y

dx,y, (4)

where the shortest path length dx,y refers to the minimum number of edges required to
connect nodes x and y.



Research Article Vol. 15, No. 1 / 1 Jan 2024 / Biomedical Optics Express 82

(3) GE: A shorter path length implies lower energy consumption and higher efficiency in
information transfer. The global effect is the mean value of the reciprocal of the shortest
path length (dx,y) of all nodes.

GE =
1

m(m − 1)

∑︂
x,y∈m,x≠y

1
dx,y

, (5)

(4) LE: While global efficiency is a metric for assessing the overall efficiency of information
transmission in the network, it is possible to have nodes that are not directly connected.
Local efficiency is used to provide a more comprehensive evaluation of network efficiency.
It is the mean efficiency of the subgraph Gi, which consists of all of the neighboring nodes
for each node and is calculated as

LE =
1
m

m∑︂
i=1

E(Gi), (6)

(5) T: It refers to the ratio of the number of triangles (closed triples) to the number of triples
(three nodes that have connections) in the network. It is given as

T =
Triangle number
Triple number

, (7)

(6) M: In brain networks, modularity refers to the extent of functional specialization and
mutual influence between different regions of the brain. A high level of modularity implies
that different brain regions operate more independently and have less impact on each other
when performing specific tasks. In this study, we evaluated the modularity of the brain
network using the Louvain algorithm [46].

(7) To calculate the small-worldness measure δ, we first need to compute the normalized
clustering coefficient γ and the normalized characteristic path length λ. The ratio of γ to λ
gives us the small-worldness measure δ:

γ =
C
Cr

, (8)

λ =
L
Lr

, (9)

δ =
γ

λ
, (10)

Here, Cr and Lr represent the average clustering coefficient and characteristic path length
of 200 randomly generated networks, respectively.

(8) The average clustering coefficient and average local efficiency of each brain region were
calculated by averaging the clustering coefficients and local efficiencies of each channel in
the six br.in regions: LPFC, RPFC, LMC, RMC, LOC, and ROC. They are respectively
defined as CLPFC., CRPFC, CLMC, CRMC, CLOC, CROC, LELPFC, LERPFC., LELOC., LEROC,
LELMC, LEROC.

2.6. Hand function performance under the VR-game task

During the gaming task, we recordedarticipants’ rl-time game performance at the sampling rate
of 10 Hz, including the x-coordinate of the standard path (standard path ds[n]) and the real-time
x-coordinate of the movement of the game character under the participants’ control (actual
movement trajectory dr[n]). We then calculated the following metrics as evaluation indicators for
the participants’ hand rehabilitation training under the game guidance:
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(1) The mean (DDM) and standard deviation (DDS) of the difference between the standard
path and the actual movement trajectory:

DDM =
1
n

|︁|︁|︁|︁|︁ n∑︂
i=1

∆di

|︁|︁|︁|︁|︁ , (11)

DDS =

⌜⎷
1
n

n∑︂
i=1

(∆di − ∆dm)
2, (12)

where ∆di represents the difference between the x-coordinate of the standard path and
the x-coordinate of the actual movement trajectory at the i-th data point, mathematically
represented as ∆di = ds[i] − dr[i]. ∆dm is the mean of |∆di |, ∆dm =

1
n
∑︁n

i=1 |∆di |.

(2) The mean (VDM) and standard deviation (VDS) of the velocity difference between the
standard path and the actual movement trajectory:

VDM =
1
n

|︁|︁|︁∑︂n−1

i=1
∆vi

|︁|︁|︁ , (13)

VDS =

⌜⃓⎷
1
n

n−1∑︂
i=1

(∆vi − ∆vm)
2, (14)

where ∆vi represents the velocity difference: ∆vi = vs[i] − vr[i]. ∆vm is the mean of |∆vi |:
∆vm =

1
n
∑︁n

i=1 |∆vi |.

(3) The mean (ADM) and standard deviation (ADS) of the acceleration difference between the
standard path and the actual movement trajectory:

ADM =
1
n

|︁|︁|︁∑︂n−1

i=1
∆ai

|︁|︁|︁ , (15)

ADS =

⌜⃓⎷
1
n

n−1∑︂
i=1

(∆ai − ∆am)
2, (16)

where ∆ai represents the ratio between the velocity difference ∆am is the mean of |∆ai |:
∆am =

1
n
∑︁n

i=1 |∆ai |.

These above parameters related to game performance were used to characterize the participants’
accuracy in controlling the game character. They reflected the relationship between hand
movements during the game and the guidance provided by the game. Smaller values of these
parameters indicated a closer alignment between hand movements and the game guidance,
reflecting participants’ better motor control ability.

2.7. Statistical analyses

One-way analysis of variance (ANOVA) was used to compare the network properties (C, Lp, GE,
LE, M, T) among the three tasks at each threshold. Then, multiple comparisons were conducted
to confirm differences in network properties between each two tasks. Pearson correlation analyses
were performed to explore the relationship between game performance parameters and the average
clustering coefficients and local efficiencies of each brain region and the whole brain network
properties. The Pearson correlation and ANOVA analyses were conducted using the MATLAB
software. The level of statistical significance was set at 0.05.
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3. Results

3.1. Task-related changes in the whole topological metrics

The six network properties obtained from all measured brain regions for the three tasks are shown
in Fig. 2. All these six network properties change with the threshold increase. At lower thresholds,
more channels were connected. As the threshold increased, the number of connections decreased.
This led to a decrease in C and an increase in Lp. GE, LE and T decreased with increasing
thresholds. With higher thresholds, weaker PLV connections were disconnected, reducing the
number of closed triplets in the network and increasing the degree of M. If a network exhibits
small-world characteristics, the small-worldness δ should be greater than one [45]. It can be seen
from Fig. 3 that the brain networks in the three tasks demonstrated small-world features.

Fig. 2. The six network properties for the three tasks under each threshold. The asterisk (*)
indicates a significant difference (p< 0.05) between VR game-guided grasping movement
and the resting state.

Fig. 3. The small-worldness of the brain networks in the three tasks
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One-way ANOVA revealed that the task effect was significant on C, Lp, LE, T, M, and δ at
certain thresholds. Further multiple comparisons showed that, compared to the resting state, Task
2 exhibited higher M and δ, and lower C, Lp, LE, and T at certain thresholds, as shown in Fig. 2.
There were no significant differences between Task 2 and Task 1 on the seven network properties.

Fig. 4. The average clustering coefficients for each brain region under the three tasks. The
gray asterisk (*) indicates significant differences (p< 0.05) between VR game-guided grasp
motion and resting state. The blue asterisk (*) denotes significant differences (p< 0.05)
between VR game-guided grasp motion and simple grasping motion.

Fig. 5. The average local efficiencies for each brain region under the three tasks. The
gray asterisk (*) indicates significant differences (p< 0.05) between VR game-guided grasp
motion and resting state. The blue asterisk (*) denotes significant differences (p< 0.05)
between VR game-guided grasp motion and simple grasping motion.
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Fig. 6. The Scatter plot of the significant correlation between the whole brain network
properties and peripheral limb performances. T represents the threshold.
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Table 2. Correlation between peripheral limb performances and the whole brain network
properties. T represents the threshold.

Peripheral limb performances Brain network properties T r2 p

VDM C 0.6 0.235 0.041

LEs 0.48 0.245 0.037

0.5 0.254 0.032

0.52 0.231 0.043

0.6 0.277 0.025

M 0.5 0.259 0.030

0.52 0.299 0.044

VDS C 0.6 0.235 0.048

LE 0.48 0.230 0.040

0.5 0.267 0.028

0.52 0.243 0.038

ADM LE 0.48 0.248 0.036

0.5 0.256 0.032

M 0.5 0.223 0.048

ADS C 0.6 0.248 0.036

LE 0.48 0.311 0.016

0.5 0.321 0.014

0.52 0.298 0.019

0.6 0.245 0.037

M 0.5 0.228 0.045

3.2. Task-related changes in the network metrics of each brain region

To further explore the involvement of each brain region in the tasks, we also compared the
clustering coefficient and local efficiency for each brain region among the three tasks. One-
way ANOVA showed significant task effect on CRMC, LERMC, CLOC, LELOC. Further multiple
comparisons revealed that Task 2 showed a decrease of CRMC, LERMC compared to the resting
state and Task 1 (Fig. 4 and 5). Additionally, Task 2 also had a lower CLOC, LELOC compared to
the resting state (Fig. 4 and 5).

3.3. Correlation results

To better understand the quantitative relationship between subjects’ peripheral limb performances
and changes in brain network properties, we conducted correlation analyses. Figure 6 presents
all the significant correlations between the limb performance and the whole network properties
(p< 0.05). Specifically, VDM was negatively correlated with C, LE and M. VDS was negatively
correlated with C and LE. ADM was negatively correlated with the LE and M. ADS had a
negative correlation with the C, LE and M. The values of r2 and p for these significant correlations
are shown in Table 2.

Besides, we analyzed the correlation between subjects’ peripheral limb performances and the
average clustering coefficient and local efficiency for each brain region. We found significant
correlations primarily in the LPFC, followed by the RMC (Fig. 7 and 8). The values of r2 and p
for these significant correlations are presented in Table 3 and Table 4.
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Fig. 7. The Scatter plot of the significant correlation between the average C of each brain
region and peripheral limb performances. T represents the threshold.
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Fig. 8. The Scatter plot of the significant correlation between the average LE of each brain
region and peripheral limb performances. T represents the threshold.
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Table 3. Correlation between peripheral limb performances and average clustering coefficient and
local efficiency of each brain region. T represents the threshold.

C LE

Limb perfor-
mances

Brain
regions

T r2 p Limb perfor-
mances

Brain
regions

T r2 p

VDM LPFC 0.44 0.233 0.042 DDS RMC 0.52 0.221 0.049

0.5 0.230 0.044 0.6 0.258 0.031

0.54 0.228 0.045 VDM LPFC 0.5 0.228 0.045

0.56 0.220 0.049 0.54 0.228 0.045

0.58 0.232 0.044 0.58 0.236 0.041

VDS LPFC 0.42 0.250 0.035 0.6 0.232 0.043

0.44 0.264 0.029 VDS LPFC 0.42 0.256 0.032

0.46 0.224 0.048 0.44 0.237 0.040

0.50 0.230 0.039 0.5 0.228 0.045

0.52 0.227 0.046 0.52 0.252 0.034

0.54 0.228 0.045 0.54 0.228 0.045

0.56 0.227 0.046 0.58 0.239 0.040

0.58 0.243 0.038 0.6 0.240 0.039

ADM LPFC 0.44 0.237 0.041 ADS LPFC 0.42 0.286 0.022

0.5 0.220 0.049 0.44 0.258 0.031

ADS LPFC 0.44 0.296 0.020 0.46 0.225 0.047

0.46 0.257 0.032 0.48 0.239 0.038

0.48 0.255 0.032 0.5 0.263 0.029

0.5 0.279 0.024 0.52 0.299 0.019

0.52 0.266 0.029 0.54 0.278 0.025

0.54 0.267 0.028 0.56 0.259 0.031

0.56 0.259 0.031 0.58 0.291 0.020

0.58 0.270 0.027

0.6 0.252 0.034
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4. Discussion

This study utilized fNIRS to investigate the effects of VR game rehabilitation training on brain
networks and the potential links between brain networks and game performance. The results
showed that the VR game induced higher modularity and lower C, Lp, and T than the resting
state. Besides, the CRMC, LERMC for the VR game task were significantly lower than those of
Task 1. In game-based rehabilitation training, game performance was significantly negatively
correlated with the brain network’s C, LE, and M. It was also significantly negatively correlated
with CLPFC, LELPFC and LERMC.

4.1. Decrease in clustering coefficient of the whole brain and each region

In this study, compared to the resting state, the clustering coefficient and transitivity of the
brain network decreased during game task-oriented conditions, indicating a reduction in the
number of local short connections in the brain network. Pang [18] and Lin [19] compared the
functional brain networks of healthy subjects and post-stroke patients with motor impairments in
the prefrontal cortex and motor areas, respectively. They found that the clustering coefficient and
transitivity in the motor cortex of stroke patients were significantly higher than those in healthy
participants, indicating a phenomenon of high local clustering in the brain functional network
of stroke patients. The reduction in the number of local short connections observed during VR
game task-oriented rehabilitation training suggests that the VR rehabilitation training designed
in this study may be an effective approach for stroke rehabilitation. The clustering coefficients
in the RMC and LOC brain regions were lower than in the resting state. Moreover, compared
to simple grasping movements, VR intervention significantly decreased the average clustering
coefficient in the RMC brain region. These results suggest that VR game-oriented grasping
movements can reduce the average clustering coefficient of the entire brain and significantly
decrease the clustering coefficient in the motor cortex after excluding the effects of grasping alone.
This indicates that VR game intervention can improve the brain functional network to some
extent and may help improve the efficiency of grip function rehabilitation in patients. Previous
research has shown that with increasing task difficulty, due to the activation level of the brain and
the reallocation of brain resources, the functional connections of the contralateral brain region
controlling unilateral movements are inhibited [28,47]. In task-oriented game conditions, the
inhibition of functional connections leads to a reduction in local network connections, resulting
in a decrease in the clustering coefficient. This finding is consistent with our previous research
[27].

4.2. Increase in modularity of the whole brain

The modularity of the brain network is associated with cognitive load in working memory
[48–50]. Research has shown that the connectivity between different modules of the brain
functional network changes as the cognitive demands of a task shift from simple to complex
[51], leading to a dynamic transition of the brain’s functional pattern from the default mode to
task-positive states [52]. We believe that the inclusion of VR games increases the cognitive load
during grasping movements for the participants, which is reflected in an increased modularity
of the brain functional network. This phenomenon may be associated with the participants’
increased engagement and active involvement in the task. One possible reason for the increase
in modularity in a brain network is the functional segregation and specialization of different
brain regions, where modules emerge to perform specific cognitive functions. This modular
organization allows for efficient information processing and promotes robustness and flexibility
in the brain [53]. However, the global efficiency and the local efficiency of the whole brain
are reduced in this study. It may be due to the increase in functional specialization [54]. With
modules form and become more distinct, there can be a decrease in the interconnectivity among
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different brain regions within each module. This reduction in local connectivity can lead to a
decrease in local efficiency.

4.3. Negative correlation between the game performance and brain network perfor-
mances

DDM, DDS, VDM, VDS, ADM, and ADS can represent the stability of hand movement control
to some extent. Higher values of these metrics indicate poorer control stability. Higher values of
the average clustering coefficient, average local efficiency, and modularity at the whole-brain
level corresponded to lower game performance, indicating more accurate and stable game
performance. This suggests that in VR game tasks, better performance depends on a greater
number of connections within and between modules, which is consistent with the findings of
[55]. Higher local efficiency and clustering coefficient may be associated with a stronger ability
of the network to process information.

4.4. Limitations and future directions

During the experimental design phase, we did not randomize the order of the tasks. However,
randomizing the experimental sequence would have been more advantageous for this study.
To minimize testing variables, we did not introduce any additional sounds in each experiment.
However, this led to a certain degree of mismatch between the grasping actions and VR grasping
actions in terms of frequency. This will require improvements in future projects. The following
study will focus on stroke patients. The CAR algorithm was used to reduce the superficial
artifacts in this study. Short-distance measurements as regressors in a General Linear Model
(GLM) has been proved to be more efficient in removing systemic interference [56,57], we will
try to improve the reliability of the data by adopting short-distance channels in the future study.

5. Conclusion

In this study, our designed VR game task intervention can decrease the clustering coefficient of
the brain motor cortex network and enhance the modularity of the whole brain network. This
suggests that VR game task-oriented grasping training may potentially improve the pathological
features characterized by a high clustering coefficient in the motor cortex while enhancing the
patient’s ability to mobilize brain resources for brain network remodeling.
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